

Day	Details	Activity	Impact
1	Cytological Ultrastructure	Micro-Metric Analysis: Calculating actual size and magnification using the $I = AM$ formula with electron-micrograph data.	Establishes precision in biological measurement and sub-cellular conceptualization.
2	Bioenergetics & Kinetics	Enzymatic Rate Optimization: Plotting pH and temperature denaturation curves to determine V_{max} and active site saturation.	Master the complex biochemistry of metabolic pathways and reaction rate variables.
3	Molecular Inheritance	Genotypic Probability Matrices: Utilizing Punnett Squares and pedigree analysis to predict homozygous and heterozygous expression.	Decodes the statistical foundations of genetic inheritance and chromosomal variation.
4	Stoichiometric Calculations	Molar Mass Synthesis: Determining empirical formulae and theoretical yields through rigorous balancing of chemical equations.	Eliminates "Mole-fear" by providing a systematic algorithmic approach to quantitative chemistry.

5	Atomic Topology & Bonding	Electrostatic Force Modeling: Visualizing ionic lattices, covalent hybridization, and delocalized electron systems in allotropes.	Provides a high-level understanding of material properties based on intermolecular forces.
6	Thermodynamic Systems	Enthalpy & Calorimetry: Analyzing exothermic and endothermic profile diagrams to calculate bond energy differentials.	Teaches students to quantify energy transfers at a molecular level using ΔH notation.
7	Electrodynamics	Ohmic Component Profiling: Constructing V-I characteristic graphs for non-ohmic conductors like thermistors and LDRs.	Hardwires the physics of circuit regulation and the mathematical laws governing current flow.
8	Particulate & Nuclear Physics	Isotopic Half-Life Decay: Modeling radioactive decay curves and the ionization potential of Alpha, Beta, and Gamma emissions.	Secures marks on high-tariff physics questions involving nuclear stability and atomic notation.
9	Applied Mechanics	Vector Force Resolution: Resolving resultant forces and calculating work done through scalar and vector manipulation.	Transitions students from basic "motion" to the sophisticated Newtonian mechanics of equilibrium.

10	Empirical Methodology	Variable Control Audit: Evaluating "Required Practicals" through the lens of validity, reliability, and systematic error reduction.	Maximizes the 15-20% of marks allocated to experimental design and data evaluation.
----	------------------------------	--	---