

Day	Details	Activity	Impact
1	Numerical Fluency & Compounding	Algorithmic Iteration: Analyzing geometric progression through compound interest and reverse-percentage depreciation models.	Establishes a rigorous foundation in non-linear numerical reasoning and fiscal mathematics.
2	Proportional Reasoning	Constant of Proportionality Analysis: Deriving and manipulating $y = kx$ and $y = \frac{k}{x}$ frameworks for complex physics-based variables.	Transitions students from basic scaling to sophisticated algebraic proportionality modeling.
3	Linear Calculus Foundations	Variable Isolation & Identity Synthesis: Systematic derivation of n^{th} term expressions for quadratic and arithmetic sequences.	Hardwires the ability to manipulate abstract symbolic notations under time-constrained conditions.
4	Quadratic Dynamics	Vertex Form Reconstruction: Completing the square to identify parabolic minima and solving non-factorable trinomials via the Quadratic Formula.	Equips students with high-level analytical tools for advanced non-linear coordinate geometry.
5	Polygonal & Circular Topology	Euclidean Proof Synthesis: Applying formal Circle Theorems and deductive reasoning to solve	Develops formal mathematical logic and the ability to

		intricate geometric conjectures.	construct multi-stage geometric proofs.
6	Trigonometric Functions	Sinusoidal Relationships: Applying the Sine and Cosine rules to non-right-angled triangles in 3D spatial contexts.	Moves beyond basic SOHCAHTOA into advanced spatial trigonometry required for Grade 8/9.
7	Vector Geometry & Dimensionality	Linear Combinations of Vectors: Executing vector addition, scalar multiplication, and proving collinearity within geometric grids.	Introduces higher-order spatial reasoning and the formal language of directional magnitude.
8	Probability Theory	Bayesian Logic Stems: Constructing conditional probability matrices and tree diagrams for dependent "non-replacement" events.	Trains the brain to calculate risk and frequency in multi-variant stochastic environments.
9	Statistical Synthesis	Bivariate Data Analysis: Interpreting frequency density in Histograms and evaluating skewness through Interquartile Range (IQR) metrics.	Enables high-level critical appraisal of data distribution and comparative statistical measures.
10	Executive Exam Strategy	Metacognitive Paper Dissection: A rigorous audit of high-tariff "AO3" (Problem Solving) questions and mark-scheme optimization.	Refines the student's ability to decode examiners' intent and secure maximum partial credit on complex tasks.